e Dynd MOF L Train personalized machine learning models without collecting sensitive user data.

Privacy-Enabled
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Privacy-Enabled Use Cases:
Financial fraud detection, credit score

prediction, privacy-preserving ad-targeting,

EHR and insurance claims

Next-Generation
Personalized Al

10% higher accuracy
with personalized MLT

“Companies that excel at personalization
generate 40% more revenue from those
activities than average players...”

McKinsey & Company
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Cohort-specific Models User-specific Models

One-size-fits-all Model
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Increased Personalization

Personalized ML Use-Cases:
Speech-to-text, intelligent Al assistants,
personalized HealthAl, personalized
recommendations, etc...

Bringing ML to the Edge

Deploy models with
10X smaller memory
footprint®

Run on edge devices with
10X fewer hardware resources

Slash Data Transfer Costs
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Edge-ML Use Cases:

Fine-tuning computer vision and NLP
models on mobile devices, automotive,
autonomous vehicles, embedded energy
systems, smart-cities

TImprovements benchmarked on CIFAR-10 and TinylmageNET dataset with ResNet-18 base model. Similar results obtained for LSTM Next Word Prediction
model Human Activity Recoanition neural network on biometric data, and neural collaborative filtering model on Microsoft News Dataset (MIND)



